„Dieser systemtheoretisch gut faßbare Differenzierungstrend bedeutet für die Einzelperson mehr und mehr Anlaß, die eigene Differenz zur Umwelt (und in der Zeit-Dimension: die Geschichte und die Zukunft dieser Differenz) auf die eigene Person zurück zuinterpretieren, wodurch das Ich zum Focus des Erlebens und die Umwelt relativ konturlos wird. Für die Selbstidentifikation als Grundlage des eigenen Erlebens und Handelns reicht es nicht mehr aus, um die Existenz des eigenen Organismus zu wissen, einen Namen zu haben und durch allgemeine soziale Kategorien wie Alter, Geschlecht, sozialer Status, Beruf fixiert zu sein. Vielmehr muß der Einzelne auf der Ebene seines Persönlichkeitssystems, und das heißt: in der Differenz zu seiner Umwelt und in der Art, wie er sie im Unterschied zu anderen handhabt, Bestätigung finden.“ (p. 17) #Luhmann #DifferenzZurUmwelt #Selbstidentifikation
Archiv der Kategorie: Systemtheorie
Luhmann: Im Exzeß
Zitat
„Im Exzeß können Liebe und Haß konvergieren oder doch leicht ineinander übergehen.“ (p. 86) #Luhmann #Exzeß #Liebe #Haß
Ruelle: Thermodynamic Formalism
Zitat
„Outside of statistical mechanics proper, the thermodynamic formalism and its mathematical methods have now been used extensively in constructive quantum field theory and in the study of certain differentiable dynamical systems (notably Anosov diffeomorphisms and flows).“ (p. 1) #Ruelle #thermodynamic #formalism
Ruelle: The states of classical systems
Zitat
„For classical systems the states are probability measures on an appropriate space of infinite configurations; such states can also be viewed as linear functionals on an abelian algebra (an algebra of continuous functions in the case of Radon measures).“ (p. 2) #Ruelle #system #states
Thom: The Local States of a System
Zitat
„We propose the following general model to parameterize the local states of a system: the space of observables M contains a closed subset K, called the catastrophe set, and as long as the representative point m of the system does not meet K, the local nature of the system does not change. The essential idea introduced here is that the local structure of K, the topological type of its singularities and so forth, is in fact determined by an underlying dynamic defined on a manifold M which is in general impossible to exhibit. The evolution of the system will be defined by a vector field X on M, which will define the macroscopic dynamic. Whenever the point m meets K, there will be a discontinuity in the nature of the system which we will interpret as a change in the previous form, a morphogenesis. Because of the restrictions outlined above on the local structure of K we can, to a certain extent, classify and predict the singularities of the morphogenesis of the system without knowing either the underlying dynamic or the macroscopic evolution defined by X. In fact, in most cases we proceed in the opposite direction: from a macroscopic examination of the morphogenesis of a process and a local and global study of its singularities, we can try to reconstruct the dynamic that generates it. Although the goal is to construct the quantitative global model (M, K, X), this may be difficult or even impossible. However, the local dynamical interpretation of the singularities of the morphogenesis is possible and useful and is an indispensable preliminary to defining the kinematic of the model; and even if a global dynamical evolution is not accessible, our local knowledge will be much improved in the process.“ (p. 7f.) #Thom #system #discontinuity #morphogenesis