Chen: Networks and graphs


“Networks, or graphs (a collection of nodes with edges connecting them), have long been studied in a prolific branch of mathematics known as “graph theory” and are often used by scientists to model the structure of many complex systems, ranging from technological systems and biological systems to social systems and economic systems. Human beings are surrounded by a variety of different types of networks.” (p. 1) #Chen #Network #graph #mathematics #structure #system

Chen, Wei, Explosive Percolation in Random Networks. Berlin/Heidelberg: Springer 2014. 63 S.

August: Systeme


“Ein System ist dann ein Set an Variablen, das in einer Matrix bzw. in Matrizen erfasst werden kann, sodass sich Relationen und Transformationsregeln in Funktionen und Vektoren festhalten lassen. Diese können wiederum unmittelbar in Funktionsgraphen und Kräftediagramme übertragen werden, die dann – so Ashby – »a basic network, a diagram of immediate effects« zeigen.” (p. 142) #August #Ashby #System #Matrix

August, Vincent, Technologisches Regieren. Der Aufstieg des Netzwerk-Denkens in der Krise der Moderne. Foucault, Luhmann und die Kybernetik. Bielefeld: Transcript 2021. 480 S., ISBN 978-3-8376-5597-1.

Newman: What is a network?


“A network is a set of items, which we will call vertices or sometimes nodes, with connections between them, called edges. Systems taking the form of networks (also called “graphs” in much of the mathematical literature) abound in the world.” (p. 2) #Newman #network #system

Newman, Mark E. J., The Structure and Function of Complex Networks, in: SIAM Review 45 (2003), 167–256.

Manneville: Universality


“In particular, fundamental problems related to universality could be tackled, both for confine systems where the theory of dynamical systems is relevant (chaos and transition scenarios, e.g., the subharmonic cascade) and for extended systems where statistical physics is an appealing framework (Ginzburg–Landau formalism and nonlinear pattern selection, space–time intermittency and directed percolation).” (p. 61) #Manneville #universality #system #chaos #transition #StatisticalPhysics #percolation

Manneville, Paul, Rayleigh–Bénard Convection: Thirty Years of Experimental, Theoretical, and Modeling Work, in: Innocent Mutabazi/José Eduardo Wesfreid/Étienne Guyon (Hgg.), Dynamics of Spatio-Temporal Cellular Structures. Henri Benard Centenary Review. New York: Springer 2006, 41–65.

Bühlmann: Systems


„In real nature, generative as well as generational, no system is ever closed.“ (p. XIV) #Bühlmann #nature #system

Bühlmann, Vera, Mathematics and Information in the Philosophy of Michel Serres (Michel Serres and Material Futures); herausgegeben von David Webb und Joanna Hodge. London: Bloomsbury Academic 2020. 238 S., ISBN 978-1-350-01976-8.