„La physique mathématique s’est développée sous deux formes différentes qui avaient mis aux prises, d’abord l’école française de Descartes et l’école italienne de Galilée et de Torricelli, puis les partisans de Leibniz et les partisans de Newton : les uns, géomètres purs qui procédaient par déduction a priori, les autres, observateurs avant tout, qui prétendaient ne relever que de l’expérience.“ (p. 253) #Brunschvicq #Descartes #Galilée #Torricelli #Leibniz #Newton #physique #mathématique
2012693
{2012693:3UX4LRWE}
1
theologie-und-philosophie
50
default
14200
https://philosophy-at-work.eu/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%223UX4LRWE%22%2C%22library%22%3A%7B%22id%22%3A2012693%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Brunschvicg%22%2C%22parsedDate%22%3A%221912%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cspan%20style%3D%5C%22font-variant%3Asmall-caps%3B%5C%22%3EBrunschvicg%2C%20L%26%23xE9%3Bon%3C%5C%2Fspan%3E%2C%20%3Ci%3ELes%20%26%23xE9%3Btapes%20de%20la%20philosophie%20math%26%23xE9%3Bmatique%3C%5C%2Fi%3E.%20Paris%3A%20Alcan%201912.%20658%20S.%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22book%22%2C%22title%22%3A%22Les%20%5Cu00e9tapes%20de%20la%20philosophie%20math%5Cu00e9matique%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%5Cu00e9on%22%2C%22lastName%22%3A%22Brunschvicg%22%7D%5D%2C%22abstractNote%22%3A%221%22%2C%22date%22%3A%221912%22%2C%22language%22%3A%22FR%22%2C%22ISBN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%2296IMF5ZE%22%5D%2C%22dateModified%22%3A%222021-10-21T10%3A01%3A48Z%22%7D%7D%5D%7D
Brunschvicg, Léon, Les étapes de la philosophie mathématique. Paris: Alcan 1912. 658 S.