Brunschvicq: La physique mathématique

Zitat

„La physique mathématique s’est développée sous deux formes différentes qui avaient mis aux prises, d’abord l’école française de Descartes et l’école italienne de Galilée et de Torricelli, puis les partisans de Leibniz et les partisans de Newton : les uns, géomètres purs qui procédaient par déduction a priori, les autres, observateurs avant tout, qui prétendaient ne relever que de l’expérience.“ (p. 253) #Brunschvicq #Descartes #Galilée #Torricelli #Leibniz #Newton #physique #mathématique

2012693 {2012693:3UX4LRWE} 1 theologie-und-philosophie 50 default 14200 https://philosophy-at-work.eu/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%223UX4LRWE%22%2C%22library%22%3A%7B%22id%22%3A2012693%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Brunschvicg%22%2C%22parsedDate%22%3A%221912%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%201.35%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3B%26lt%3Bspan%20style%3D%26quot%3Bfont-variant%3Asmall-caps%3B%26quot%3B%26gt%3BBrunschvicg%2C%20L%26%23xE9%3Bon%26lt%3B%5C%2Fspan%26gt%3B%2C%20%26lt%3Bi%26gt%3BLes%20%26%23xE9%3Btapes%20de%20la%20philosophie%20math%26%23xE9%3Bmatique%26lt%3B%5C%2Fi%26gt%3B.%20Paris%3A%20Alcan%201912.%20658%20S.%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22book%22%2C%22title%22%3A%22Les%20%5Cu00e9tapes%20de%20la%20philosophie%20math%5Cu00e9matique%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%5Cu00e9on%22%2C%22lastName%22%3A%22Brunschvicg%22%7D%5D%2C%22abstractNote%22%3A%221%22%2C%22date%22%3A%221912%22%2C%22language%22%3A%22FR%22%2C%22ISBN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%2296IMF5ZE%22%5D%2C%22dateModified%22%3A%222021-10-21T10%3A01%3A48Z%22%7D%7D%5D%7D
Brunschvicg, Léon, Les étapes de la philosophie mathématique. Paris: Alcan 1912. 658 S.

Bourbaki: La vérité en mathématique

Zitat

„Les mathématiciens ont toujours été persuadés qu’ils démontrent des « vérités » ou des « propositions vraies » ; une telle conviction ne peut évidemment être que d’ordre sentimental ou métaphysique, et ce n’est pas en se plaçant sur le terrain de la mathématique qu’on peut la justifier, ni même lui donner un sens qui n’en fasse pas une tautologie. L’histoire du concept de vérité en mathématique relève donc de l’histoire de la philosophie et non de celle des mathématiques“. (p. 21) #Bourbaki #mathématique #vérité #métaphysique

2012693 {2012693:N52IZNBG} 1 theologie-und-philosophie 50 default 13939 https://philosophy-at-work.eu/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22N52IZNBG%22%2C%22library%22%3A%7B%22id%22%3A2012693%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Bourbaki%22%2C%22parsedDate%22%3A%222007%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%201.35%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3B%26lt%3Bspan%20style%3D%26quot%3Bfont-variant%3Asmall-caps%3B%26quot%3B%26gt%3BBourbaki%2C%20Nicolas%26lt%3B%5C%2Fspan%26gt%3B%2C%20%26lt%3Bi%26gt%3B%26%23xC9%3Bl%26%23xE9%3Bments%20d%26%23x2019%3Bhistoire%20des%20math%26%23xE9%3Bmatiques%26lt%3B%5C%2Fi%26gt%3B.%20Berlin%2C%20Heidelberg%3A%20Springer%202007.%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22book%22%2C%22title%22%3A%22%5Cu00c9l%5Cu00e9ments%20d%27histoire%20des%20math%5Cu00e9matiques%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicolas%22%2C%22lastName%22%3A%22Bourbaki%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222007%22%2C%22language%22%3A%22%22%2C%22ISBN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%2296IMF5ZE%22%2C%227YRPYWCF%22%5D%2C%22dateModified%22%3A%222021-08-30T11%3A16%3A56Z%22%7D%7D%5D%7D
Bourbaki, Nicolas, Éléments d’histoire des mathématiques. Berlin, Heidelberg: Springer 2007.

Serres: Le monde

Zitat

„[L]e monde est écrit en termes mathématiques.“ (p. 137) #Serres #monde #mathématique

2012693 {2012693:WD3PKMME} 1 theologie-und-philosophie 50 default 13598 https://philosophy-at-work.eu/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22WD3PKMME%22%2C%22library%22%3A%7B%22id%22%3A2012693%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Serres%22%2C%22parsedDate%22%3A%221974%22%2C%22numChildren%22%3A6%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%201.35%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3B%26lt%3Bspan%20style%3D%26quot%3Bfont-variant%3Asmall-caps%3B%26quot%3B%26gt%3BSerres%2C%20Michel%26lt%3B%5C%2Fspan%26gt%3B%2C%20%26lt%3Bi%26gt%3BHerm%26%23xE8%3Bs%20III.%20La%20traduction%26lt%3B%5C%2Fi%26gt%3B.%20Paris%3A%20Minuit%201974.%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22book%22%2C%22title%22%3A%22Herm%5Cu00e8s%20III.%20La%20traduction%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michel%22%2C%22lastName%22%3A%22Serres%22%7D%5D%2C%22abstractNote%22%3A%221%22%2C%22date%22%3A%221974%22%2C%22language%22%3A%22FR%22%2C%22ISBN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%2296IMF5ZE%22%2C%22B6P3U8US%22%2C%22C8HIFMMZ%22%2C%223AR8NCYC%22%2C%22CSD8YRNG%22%2C%22Z8UKS978%22%5D%2C%22dateModified%22%3A%222021-07-23T07%3A03%3A45Z%22%7D%7D%5D%7D
Serres, Michel, Hermès III. La traduction. Paris: Minuit 1974.

Brunschvicq: Temps et espace

Zitat

„De là on ne peut pas conclure que l’arithmétique soit la science du temps comme la géométrie est la science de l’espace. Le temps n’est pas un objet; il est une condition de l’arithmétique, ou plus exactement de la mathématique en général.“ (p. 269) #Brunschvicq #mathématique #arithmétique #temps #géométrie #espace

2012693 {2012693:3UX4LRWE} 1 theologie-und-philosophie 50 default 12546 https://philosophy-at-work.eu/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%223UX4LRWE%22%2C%22library%22%3A%7B%22id%22%3A2012693%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Brunschvicg%22%2C%22parsedDate%22%3A%221912%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%201.35%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3B%26lt%3Bspan%20style%3D%26quot%3Bfont-variant%3Asmall-caps%3B%26quot%3B%26gt%3BBrunschvicg%2C%20L%26%23xE9%3Bon%26lt%3B%5C%2Fspan%26gt%3B%2C%20%26lt%3Bi%26gt%3BLes%20%26%23xE9%3Btapes%20de%20la%20philosophie%20math%26%23xE9%3Bmatique%26lt%3B%5C%2Fi%26gt%3B.%20Paris%3A%20Alcan%201912.%20658%20S.%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22book%22%2C%22title%22%3A%22Les%20%5Cu00e9tapes%20de%20la%20philosophie%20math%5Cu00e9matique%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%5Cu00e9on%22%2C%22lastName%22%3A%22Brunschvicg%22%7D%5D%2C%22abstractNote%22%3A%221%22%2C%22date%22%3A%221912%22%2C%22language%22%3A%22FR%22%2C%22ISBN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%2296IMF5ZE%22%5D%2C%22dateModified%22%3A%222021-10-21T10%3A01%3A48Z%22%7D%7D%5D%7D
Brunschvicg, Léon, Les étapes de la philosophie mathématique. Paris: Alcan 1912. 658 S.