“Vertex (pl. vertices): The fundamental unit of a network, also called a site (physics), a node (computer science), or an actor (sociology).
Edge: The line connecting two vertices. Also called a bond (physics), a link (computer science), or a tie (sociology).” (p. 5) #Newman #network #vertex #edge #bond #link
Archiv der Kategorie: Wissenschaftstheorie
Neu :: Simons: Michel Serres and French Philosophy of Science: Materiality, Ecology and Quasi-Objects
Zitat
“Massimiliano Simons provides the first systematic study of Serres’s work in the context of twentieth-century French philosophy of science. By proposing new readings of Serres’s philosophy, he creates a synthesis between his predecessors, Gaston Bachelard, Georges Canguilhem, and Louis Althusser as well as contemporary Francophone philosophers of science such as Bruno Latour and Isabelle Stengers. Simons situates Serres’s unique contribution through his notion of the quasi-object, a concept, he argues, that organizes great parts of Serres’s work into a promising philosophy of science as well as providing a challenge to the narrower field of French epistemology, to which it has often been limited. Showing how Serres’s philosophy can serve as a normative approach to science and technology, ‚Michel Serres and French Philosophy of Science‘ takes in themes of materiality, religiosity, modernity and ecology to advance a timely alternative to philosophy of science for contemporary life.“ #Simons #Serres #science #FrenchPhilosophy
Gueroult: Le système leibnizien
Zitat
“Ce qui est idéal et subjectif dans l’espace, c’est, par conséquent, la forme de la relation, non la nécessité qui s’exprime en elle. Il n’y a donc rien là qui soit intrinsèquement contradictoire; tout, au contraire, s’en chaîne dans cette réduction du jugement synthétique au jugement analytique qui reste pour l’être fini un idéal. Sans doute, peut-on contester la thèse elle-même, mais c’est là une tout autre question que d’accuser d’absurdité la démonstration qu’en donne le système leibnizien.” (p. 275) #Gueroult #Leibniz #espace
Braudel: Les modèles intemporels
Zitat
„A la limite, comme diraient les mathématiciens, ce genre de modèle rejoindrait les modèles favoris, quasi intemporels, des sociologues mathématiciens. Quasi intemporels, c’est-à-dire, en vérité, circulant par les routes obscures et inédites de la très longue durée.“ (p. 742) #Braudel #modèle #intemporel #TrèsLongueDurée
Auffray: Spacetime and Continuity
Zitat
“Further on in this paper we investigate the significance of the concept of continuity, concluding that it should not be retained as a fundamental characteristic of space in general and of spacetime(s) in particular.” (p. 1428) #Auffray #continuity #spacetime